
1. American Sign Language (ASL)

American Sign Language (ASL) is the primary language used by many deaf individuals in North America,

and it is also used by hard-of-hearing and hearing individuals. The language is as rich as spoken languages

and employs signs made with the hand, along with facial gestures and bodily postures.

A lot of recent progress has been made towards developing computer vision systems that translate sign

language to spoken language. This technology often relies on complex neural network architectures that

can detect subtle patterns in streaming video. However, as a first step, towards understanding how to build

a translation system, we can reduce the size of the problem by translating individual letters, instead of

sentences.

In this notebook, we will train a convolutional neural network to classify images of American Sign

Language (ASL) letters. After loading, examining, and preprocessing the data, we will train the network and

test its performance.

In the code cell below, we load the training and test data.

x_train  and x_test  are arrays of image data with shape (num_samples, 3, 50, 50) ,

corresponding to the training and test datasets, respectively.

y_train  and y_test  are arrays of category labels with shape (num_samples,) , corresponding

to the training and test datasets, respectively.

(1600, 50, 50, 3)

(400, 50, 50, 3)

In [6]: # Import packages and set numpy random seed 
import numpy as np 
np.random.seed(5)  
import tensorflow as tf 
tf.random.set_seed(2) 
from datasets import sign_language 
import matplotlib.pyplot as plt 
%matplotlib inline 
 
# Load pre-shuffled training and test datasets 
(x_train, y_train), (x_test, y_test) = sign_language.load_data() 

In [7]: x_train.shape 

Out[7]:

In [8]: x_test.shape 

Out[8]:



2. Visualize the training data

Now we'll begin by creating a list of string-valued labels containing the letters that appear in the dataset.

Then, we visualize the first several images in the training data, along with their corresponding labels.

3. Examine the dataset

Let's examine how many images of each letter can be found in the dataset.

Remember that dataset has already been split into training and test sets for you, where x_train  and 

x_test  contain the images, and y_train  and y_test  contain their corresponding labels.

Each entry in y_train  and y_test  is one of 0 , 1 , or 2 , corresponding to the letters 'A' , 'B' ,

and 'C' , respectively.

We will use the arrays y_train  and y_test  to verify that both the training and test sets each have

roughly equal proportions of each letter.

In [9]: # Store labels of dataset 
labels = ['A','B','C'] 
 
# Print the first several training images, along with the labels 
fig = plt.figure(figsize=(20,5)) 
for i in range(36): 
    ax = fig.add_subplot(3, 12, i + 1, xticks=[], yticks=[]) 
    ax.imshow(np.squeeze(x_train[i])) 
    ax.set_title("{}".format(labels[y_train[i]])) 
plt.show() 

In [10]: # Number of A's in the training dataset 
num_A_train = sum(y_train==0) 
# Number of B's in the training dataset 
num_B_train = sum(y_train==1) 
# Number of C's in the training dataset 
num_C_train = sum(y_train==2) 
 
# Number of A's in the test dataset 
num_A_test = sum(y_test==0) 
# Number of B's in the test dataset 
num_B_test = sum(y_test==1) 
# Number of C's in the test dataset 
num_C_test = sum(y_test==2) 
 
# Print statistics about the dataset 
print("Training set:") 
print("\tA: {}, B: {}, C: {}".format(num_A_train, num_B_train, num_C_train)) 



Training set: 
 A: 540, B: 528, C: 532 
Test set: 
 A: 118, B: 144, C: 138 

4. One-hot encode the data

Currently, our labels for each of the letters are encoded as categorical integers, where 'A' , 'B'  and 

'C'  are encoded as 0 , 1 , and 2 , respectively. However, recall that Keras models do not accept labels

in this format, and we must first one-hot encode the labels before supplying them to a Keras model.

This conversion will turn the one-dimensional array of labels into a two-dimensional array.

Each row in the two-dimensional array of one-hot encoded labels corresponds to a different image. The row

has a 1  in the column that corresponds to the correct label, and 0  elsewhere.

For instance,

0  is encoded as [1, 0, 0] ,

1  is encoded as [0, 1, 0] , and

2  is encoded as [0, 0, 1] .

(1600, 3)

5. Define the model

print("Test set:") 
print("\tA: {}, B: {}, C: {}".format(num_A_test, num_B_test, num_C_test)) 

In [11]: from keras.utils import np_utils 
 
# One-hot encode the training labels 
y_train_OH = np_utils.to_categorical(y_train) 
 
# One-hot encode the test labels 
y_test_OH = np_utils.to_categorical(y_test) 

In [12]: y_train_OH.shape 

Out[12]:



Now it's time to define a convolutional neural network to classify the data.

This network accepts an image of an American Sign Language letter as input. The output layer returns the

network's predicted probabilities that the image belongs in each category.

Model: "sequential" 
_________________________________________________________________ 
 Layer (type)                Output Shape              Param #    
================================================================= 
 conv2d (Conv2D)             (None, 50, 50, 5)         380        
                                                                  
 max_pooling2d (MaxPooling2D  (None, 12, 12, 5)        0          
 )                                                                
                                                                  
 conv2d_1 (Conv2D)           (None, 12, 12, 15)        1890       
                                                                  
 max_pooling2d_1 (MaxPooling  (None, 3, 3, 15)         0          
 2D)                                                              
                                                                  
 flatten (Flatten)           (None, 135)               0          
                                                                  
 dense (Dense)               (None, 3)                 408        
                                                                  
================================================================= 
Total params: 2,678 
Trainable params: 2,678 
Non-trainable params: 0 
_________________________________________________________________ 

6. Compile the model

After we have defined a neural network in Keras, the next step is to compile it!

7. Train the model

In [13]: from keras.layers import Conv2D, MaxPooling2D 
from keras.layers import Flatten, Dense 
from keras.models import Sequential 
 
model = Sequential() 
# First convolutional layer accepts image input 
model.add(Conv2D(filters=5, kernel_size=5, padding='same', activation='relu',  
                        input_shape=(50, 50, 3))) 
# Add a max pooling layer 
model.add(MaxPooling2D(pool_size=(4, 4))) 
# Add a convolutional layer 
model.add(Conv2D(filters=15, kernel_size=5, padding='same', activation='relu')) 
# Add another max pooling layer 
model.add(MaxPooling2D(pool_size=(4, 4))) 
# Flatten and feed to output layer 
model.add(Flatten()) 
model.add(Dense(3, activation='softmax')) 
 
# Summarize the model 
model.summary() 

In [14]: # Compile the model 
model.compile(optimizer='rmsprop',  
              loss='categorical_crossentropy',  
              metrics=['accuracy']) 



Once we have compiled the model, we're ready to fit it to the training data.

Epoch 1/2 
40/40 [==============================] - 1s 17ms/step - loss: 0.9448 - accuracy: 0.5758 
- val_loss: 0.7776 - val_accuracy: 0.6750 
Epoch 2/2 
40/40 [==============================] - 1s 14ms/step - loss: 0.7008 - accuracy: 0.7000 
- val_loss: 0.5736 - val_accuracy: 0.8000 

8. Test the model

To evaluate the model, we'll use the test dataset. This will tell us how the network performs when classifying

images it has never seen before!

If the classification accuracy on the test dataset is similar to the training dataset, this is a good sign that the

model did not overfit to the training data.

Test accuracy: 0.8125 

9. Visualize mistakes

Hooray! Our network gets very high accuracy on the test set!

The final step is to take a look at the images that were incorrectly classified by the model. Do any of the

mislabeled images look relatively difficult to classify, even to the human eye?

Sometimes, it's possible to review the images to discover special characteristics that are confusing to the

model. However, it is also often the case that it's hard to interpret what the model had in mind!

13/13 [==============================] - 0s 3ms/step 

In [15]: # Train the model 
hist = model.fit(x_train, y_train_OH, validation_split=0.2, epochs=2) 

In [16]: # Obtain accuracy on test set 
score = model.evaluate(x=x_test,  
                       y=y_test_OH, 
                       verbose=0) 
print('Test accuracy:', score[1]) 

In [17]: # Get predicted probabilities for test dataset 
y_probs = model.predict(x_test) 
 
# Get predicted labels for test dataset 
y_preds = np.argmax(y_probs, axis=1) 
 
# Indices corresponding to test images which were mislabeled 
bad_test_idxs = np.where(y_preds!=y_test)[0] 
 
# Print mislabeled examples 
fig = plt.figure(figsize=(25,4)) 
for i, idx in enumerate(bad_test_idxs): 
    ax = fig.add_subplot(2, int(np.ceil(len(bad_test_idxs)/2)), i + 1, xticks=[], yticks
    ax.imshow(np.squeeze(x_test[idx])) 
    ax.set_title("{} (pred: {})".format(labels[y_test[idx]], labels[y_preds[idx]])) 
plt.subplots_adjust(right=2.5,top=1.5) 




